Abstract

This paper presents a first approximation to the theoretical analysis of fractal-like electrodes for lithium-ion batteries, and demonstrates that fractals constitute an optimal electrode configuration for electrochemical energy storage systems. The model considers a generalized description of three-dimensional, non-deterministic branching structures composed of cylindrical elements for the electrode design. Each element is attached to a branch in an iterative process. At every branching step, the “parent” branch divides into N “child” branches ( N being a random variable with a defined probability distribution). At the same time, the dimensions of the radii and lengths of the branches are also determined by a stochastic process. With this model, the charge characteristics of several fractal electrodes corresponding to different geometric configurations are simulated, and the optimal parameters are obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call