Abstract
Exploring the interaction of light with materials periodically structured in space and time is intellectually rewarding and, simultaneously, a computational challenge. Appropriate computational tools are urgently needed to explore how such upcoming photonic materials can control light on demand. Here, we introduce a semi-analytical approach based on the transition matrix (also known as T-matrix) to analyze the optical response of a spatiotemporal metasurface. The metasurface consists of a periodic arrangement of time-varying scattering particles. In our approach, we depart from an individual scatterer's T-matrix to construct the effective T-matrix of the metasurface. From that effective T-matrix, all observable properties can reliably be predicted. We verify our semi-analytical approach with full-wave numerical simulations. We demonstrate a speed-up with our approach by a factor of more than 500 compared to a finite-element simulation. Finally, we exemplify our approach by studying the effect of time modulation on a Huygens' metasurface and discuss some emerging observable features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.