Abstract

Spintronics-based devices and circuits attract massive research interest from both academia and industry. A number of the devices and logic circuits have been proposed such as spin-based magnetic tunnel junction and all spin logic gate. A fundamental spin-based device, spin field-effect transistor (spin-FET) is one of the most interesting spin-based devices to address the power issue of semiconductor transistors which is still a research focus. In this paper, we first present an electrical model for the spin-FET based on both theoretical and experimental results. The theories of spin injection and detection are considered by a current driver of the spin-FET. Gate voltage modulation following Datta–Das theory is combined with the experimental results from several works of literature. Afterward, through the dc analysis of two spin-FETs with different channel materials, we demonstrate that the channel using InAs is a better choice to make a feasible spin-FET. The channel length is also optimized by the comparison of simulation results. Finally, a local geometry spin-FET model suitable for logic design is implemented with Verilog-A language and integrated on Cadence platform. Using our model, a low-power inverter is designed based on the concept of complementary spin-FET, and a logic circuit is proposed to implement AND and NOR logic functions. Simulation results validate the behaviors of the logic circuits and availability of our model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.