Abstract

Nakagami imaging is an appealing monitoring and evaluation technique for high-intensity focused ultrasound treatment when bubbles are present in ultrasound images. This study aimed to investigate the accuracy of thermal lesion detection using Nakagami imaging. Simulations were conducted to explore and quantify the influence of the bubbles and the subresolvable effect at the boundary of the thermal lesion on thermal lesion detection. The thermal ablation experiments were conducted in phantom and porcine liver ex vivo. In the simulation, the estimated lateral and axial size of the thermal lesion in the Nakagami image was 4.91 and 4.79 mm, close to the actual size (5×5 mm). The simulation results indicated that the subresolvable region in high-intensity focused ultrasound treatment thermal ablation mainly happened at the boundary between bubbles and the untreated region and does not affect the accuracy of thermal lesion detection. The accurate detection of the thermal lesion using Nakagami imaging mainly depends on bubbles and thermal lesion characterization. Our thermal ablation experiments confirmed that Nakagami imaging has the ability to accurately identify thermal lesions from bubbles. The subresolvable effect is helpful for thermal lesion identification, and precision is related to the Nakagami values chosen for boundary division in Nakagami imaging. Therefore, Nakagami imaging is a promising method for accurately evaluating thermal lesions. Further studies in vivo and in clinical settings will be needed to explore its potential applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.