Abstract

Recent experiments implicate spins on the surface of metals as the source of flux noise in superconducting quantum interference devices and indicate that these spins are able to relax without conserving total magnetization. We present a model of 1/f flux noise in which electron spins on the surface of metals can relax via hyperfine interactions. Our results indicate that flux noise would be significantly reduced in superconducting materials where the most abundant isotopes do not have nuclear moments, such as zinc and lead.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call