Abstract

Accurate fluid phase equilibria modeling of carbon dioxide-methanol binary system is essential for numerous industrial applications. Prior modeling studies were limited in scope in terms of temperature and pressure ranges. In this study, the phase equilibria behavior of the binary system is modeled with cubic equations-of-state (EoS) including Peng–Robinson (PR) and Soave–Redlich–Kwong with various mixing rules, Predictive Soave–Redlich–Kwong, Cubic Plus Association, and Perturbed-Chain Statistical Associating Fluid Theory. Among them, the classical PR EoS and its variants yield the overall best results in representing the phase behavior at temperature above 330 K. However, PR incorrectly predicts two liquid phases when the CO2 mole fraction exceeds ~ 0.4 at temperature lower than 330 K. Raoult's law with the classical nonrandom two-liquid excess Gibbs energy model is recommended for the low temperature conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.