Abstract

ABSTRACTThis paper results from an ongoing effort to correlate the physical properties of powders at a fundamental level with their bulk behavior. Cohesion and unconfined yield stress are the measure of inter-particle forces of attraction in the bulk powder. The existing model for cohesion does not include important bulk properties, such as particle size distribution, tapped density, and prevailing applied stress. In the present paper, flow properties of 25 bulk solids (different cement and fly ash samples) have been evaluated using a ring shear tester and the products have been characterized according to their flowabilities. Models for cohesion and unconfined yield strength have been developed in this study by taking into account the effects of particle size distribution, tapped bulk density and pre-shear stress. The newly developed models have provided good fit to the experimental data. The effect of these flow properties on the design of hoppers have been investigated for fly ash samples collected from seven consecutive electrostatic precipitator (ESP) hoppers of a coal fired thermal power station. The results show that fly ash from the rear end ESP hopper would require higher amount of opening size compared to the first or second field of ESP to ensure proper mass flow condition is achieved at all the ESP hoppers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.