Abstract

AbstractIn foam extrusion, process parameters, material properties, and the blowing agent have an influence on the resulting foam properties. For safety and environmental reasons, carbon dioxide (CO2) has gained importance as physical blowing agent for the production of low‐density polystyrene foam sheets. The sole use of CO2 often leads to corrugation, open cell structures, or surface defects on the foam sheet. As an alternative, blowing agent mixtures based on CO2 and organic solvents such as ethanol, acetone, or ethyl acetate can be used, changing solubility and flow behavior of the gas‐loaded melt. A model approach for describing foam extrusion of polystyrene with various blowing agent mixtures in an annular gap die is developed. Part I of the paper describes the modeling of material properties. In Part II, the process model including nucleation and cell formation in the flow field is developed and applied to a foam sheet extrusion process. Based on the material model, melt flow and formation of cells are modeled by a step‐wise calculation along the die, showing good agreement with experimental data. Dimensionless numbers are used to describe the foaming process and a parameter study based on these dimensionless numbers is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.