Abstract

Flexible behavior is critical for everyday decision-making and has been implicated in restricted, repetitive behaviors (RRB) in autism spectrum disorder (ASD). However, how flexible behavior changes developmentally in ASD remains largely unknown. Here, we used a developmental approach and examined flexible behavior on a probabilistic reversal learning task in 572 children, adolescents, and adults (ASD N = 321; typical development [TD] N = 251). Using computational modeling, we quantified latent variables that index mechanisms underlying perseveration and feedback sensitivity. We then assessed these variables in relation to diagnosis, developmental stage, core autism symptomatology, and associated psychiatric symptoms. Autistic individuals showed on average more perseveration and less feedback sensitivity than TD individuals, and, across cases and controls, older age groups showed more feedback sensitivity than younger age groups. Computational modeling revealed that dominant learning mechanisms underpinning flexible behavior differed across developmental stages and reduced flexible behavior in ASD was driven by less optimal learning on average within each age group. In autistic children, perseverative errors were positively related to anxiety symptoms, and in autistic adults, perseveration (indexed by both task errors and model parameter estimates) was positively related to RRB. These findings provide novel insights into reduced flexible behavior in relation to clinical symptoms in ASD.

Highlights

  • Flexible behavior is a fundamental part of everyday life

  • It requires learning from feedback to guide decisions and adapting responses when feedback changes. These cognitive processes are implicated in a range of neurodevelopmental and neuropsychiatric conditions, including autism spectrum disorder (ASD; [1]), as well as attention-deficit hyperactivity disorder (ADHD) and anxiety, both of which frequently co-occur in ASD [2,3,4,5]

  • Post hoc analyses revealed accuracy was on average significantly higher (1) in the acquisition phase than in the reversal phase, reflecting the challenge of flexible adaptation (p < .0001, d = 0.82); (2) in typical development (TD) individuals compared to ASD individuals (p < .0001, d = 0.29); and (3) in older age groups compared to younger age groups

Read more

Summary

Introduction

It requires learning from feedback to guide decisions and adapting responses when feedback changes. These cognitive processes are implicated in a range of neurodevelopmental and neuropsychiatric conditions, including autism spectrum disorder (ASD; [1]), as well as attention-deficit hyperactivity disorder (ADHD) and anxiety, both of which frequently co-occur in ASD [2,3,4,5]. Studies of neurotypical individuals show that the cognitive processes underlying flexible behavior and reinforcement learning change through childhood and adolescence into adulthood [8, 9]. A developmental approach within ASD that characterizes component learning processes is likely to bring us closer to understanding mechanisms of (in)flexible behavior and identifying therapeutic targets

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call