Abstract
Personalized fashion recommendation aims to explore patterns from historical interactions between users and fashion items and thereby predict the future ones. It is challenging due to the sparsity of the interaction data and the diversity of user preference in fashion. To tackle the challenge, this paper investigates multiple factor fields in fashion domain, such as colour, style, brand, and tries to specify the implicit user-item interaction into field level. Specifically, an attentional factor field interaction graph (AFFIG) approach is proposed which models both the user-factor interactions and cross-field factors interactions for predicting the recommendation probability at specific field. In addition, an attention mechanism is equipped to aggregate the cross-field factor interactions for each field. Extensive experiments have been conducted on three E-Commerce fashion datasets and the results demonstrate the effectiveness of the proposed method for fashion recommendation. The influence of various factor fields on recommendation in fashion domain is also discussed through experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.