Abstract
Experimental and modeling studies were conducted to understand the fate and transport properties of arsenic in drinking water distribution systems. Pilot scale experiments were performed in a distribution system simulator by injecting arsenic and measuring both adsorption onto iron pipe material and the oxidation of arsenite by hypochlorite in tap water to form arsenate. A mathematical model describing these processes was developed and simulated using EPANET-MSX, a hydraulic and multi-species water quality software for pipe networks. Model parameters were derived from the pilot-scale experiments. The model was applied to both the distribution system simulator and EPANET example network #3, a real-world model of a drinking water system serving approximately 78,000 customers. The model can be applied to systems-level studies of arsenic fate and transport in drinking water resulting from natural occurrences, accidental spills, or intentional introduction into water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.