Abstract

South Sulawesi Province is listed as the province with the highest number of Covid-19 cases in the Sulawes island. Research on Covid-19 modeling has been carried out by many researchers, but until now, there has been no research using the Bayesian spatial Conditional Autoregressive Localized model which involves a combination of factors such as distance to the provincial capital, population density, and the number of elderly people in each district in South Sulawesi Province. The aim of this research is to get the best Bayesian Conditional Autoregressive Localized model. The best model is based on four criteria, namely: Deviance Information Criteria, Watanabe Akaike Information Criteria, residuals from Modified Moran's I, and the number of areas included in a group. It was found that model with G=3 by including population density covariates was the best model. A significant factor influencing the increase in Covid-19 cases is the population density factor which has a positive effect. This shows that the more densely populated an area is, the greater the chance of being infected with Covid-19. Makassar has the highest relative risk value for Covid-19 followed by Toraja district and Pare-Pare City. Meanwhile, Bone district has the lowest relative risk value for Covid-19, followed by Wajo district and Enrekang district.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.