Abstract
For complex dynamic interactive tasks (such as aviating), operators need to continuously extract information from areas of interest (AOIs) through eye movement to maintain high level of situation awareness (SA), as failures of SA may cause task performance degradation, even system accident. Most of the current eye movement models focus on either static tasks (such as image viewing) or simple dynamic tasks (such as video watching), without considering SA. In this study, an eye movement model with the goal of maximizing SA is proposed based on Markov decision process (MDP), which is designed to describe the dynamic eye movement of experienced operators in dynamic interactive tasks. Two top-down factors, expectancy and value, are introduced into this model to represent the update probability and the importance of information in AOIs, respectively. In particular, the model regards sequence of eye fixations to different AOIs as sequential decisions to maximize the SA-related reward (value) in the context of uncertain information update (expectancy). Further, this model was validated with a flight simulation experiment. Results show that the predicted probabilities of fixation on and shift between AOIs are highly correlated (R = 0.928 and R = 0.951, respectively) with those of the experiment data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.