Abstract

Abstract The Pareto model corresponds to the power law widely used in physics, biology, and many other fields. In this article, a new generalized Pareto model with a heavy right tail is introduced and studied. It exhibits an upside-down bathtub-shaped failure rate (FR) function. The moments, quantiles, FR function, and mean remaining life function are examined. Then, its parameters are estimated by maximum likelihood, least squared error, and Anderson–Darling (a weighted least squared error) approaches. A simulation study is conducted to verify the efficiency and consistency of the discussed estimators. Analysis of Floyd River flood discharges in James, Iowa, USA, from 1935 to 1973 shows that the proposed model can be quite useful in real applications, especially for extreme value data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.