Abstract

Exposure assessment, a component of risk assessment, links sources of pollution with health effects. Exposure models are scientific tools used to gain insights into the processes affecting exposure assessment. The purpose of this paper is to review the process and methodology of estimating inhalation exposure to particulate matter (PM) using various types of models. Three types of models are discussed in the paper. Indirect type of models are physical models that employ inventories of outdoor and indoor sources and their emission rates to identify major sources contributing to exposure to PM, and use fate and transport and indoor air quality models to estimate PM concentrations at receptor sites. PM concentrations and time spent by a subject at each receptor site are input variables to the conventional exposure model that estimates the desired exposure levels. Direct type models use measured exposure or exposure concentrations in conjunction with information obtained from questionnaires to formulate exposure regression models. Stochastic models use exposure measurements, estimates can also be used, to formulate exposure population distributions and investigate associated uncertainty and variability. Since models developed using databases from western countries are not necessarily applicable in developing countries, the difference in requirements among western and developing countries is highlighted in the paper. Employment of exposure modeling methods in developing countries requires development of local information. Such information includes local outdoor and indoor source inventories, local or regional meteorological conditions, adjustment of indoor models to reflect local building construction conditions, and use of questionnaires to obtain local time budget and activity patterns of the subject population.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.