Abstract

A new compact Z-pinch x-ray hohlraum design with multiple parallel-driven x-ray sources was jointly proposed by the Sandia National Laboratories and the University of Nevada [1]. The first proof-of-principle experimental demonstration of the full configuration of this compact hohlraum with central reemission target and tailored shine shields (to provide a symmetric temperature distribution on the target) was achieved at the 1.7 MA UNR Zebra generator [2]. VisRad (PRISM Computational Sciences Co.), a 3-D view factor code, is used to simulate the multi-dimensional radiation environment within this new compact hohlraum configuration that incorporates multiple compact (mm-scale) planar wire array (PWA) x-ray sources that surround a reemission target in the center of the hohlraum cavity, allowing a reduction of hohlraum surface area and potentially providing a hotter x-ray environment. View factor modeling is a valuable design tool, allowing us to improve rapidly on experimental design and to demonstrate the feasibility of the concept for hohlraum and ICF studies on a 1–2 MA university-scale pulsed power platform. Double-PWA sources (DPWA) were modeled and used in experiments due to much better pulse shaping properties compared with single PWAs. Also, we are taking into account that the W DPWA is an anisotropic x-ray source and maximum radiation is emitted in the direction parallel to the wire planes. Different versions of compact hohlraum with two W DPWA sources and central cavity between them were analyzed using VisRad code. Simulations have predicted a reemission plastic target radiation temperature T rad ∼ 39eV, showing good correlation to experimental data 37+3 eV The possibility of optimization of new compact configuration was demonstrated by changing relative volume of central cavity. Special emphasis is made on T rad uniformity at the reemission target surface by analysis of compact holraum configuration of 6 or more DPWA pinches proposed in Ref. [2] to reach better symmetry of hohlraum exposure. The scaling of this 6 DPWA sources hohlraum configuration using VisRad for higher current 20 MA generators (as Sandia National Laboratories Z facility) show that central target T rad ∼ 85 eV is reachable. VisRad simulation has shown that x-ray power flux in new compact hohlraum might be ∼1.3 times higher if W sources will be changed with Au sources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call