Abstract
We analyze the many-particle correlations that affect the optical properties of two-dimensional semiconductors. These correlations manifest themselves through the specific optical resonances such as excitons, trions, etc. Starting from the generic electron-hole Hamiltonian and employing the microscopic Heisenberg equation of motion the infinite hierarchy of differential equations can be obtained. In order to decouple the system we address the cluster expansion technique which provides a regular procedure of consistent accounting of many-particle correlation contributions into the interband polarization dynamics. In particular, the partially taken into account three-particle correlations modify the behavior of absorption spectra with the emergence of a trion-like peak additional to excitonic ones. In contrast to many other approaches, the proposed one allows us to model the optical response of 2d semiconductors in the regime when the Fermi energies are of the order of the exciton and trion binding energies, thus allowing us to rigorously model the onset of the excitonic Mott transition, the regime being recently studied in various 2d semiconductors, such as transition metal dichalcogenides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.