Abstract

Light-driven phenomena in organic molecular aggregates underpin several mechanisms relevant to optoelectronic applications. Modeling these processes is essential for aiding the design of new materials and optimizing optoelectronic devices. In this review, we cover the use of different atomistic models, excited-state dynamics, and transport approaches for understanding light-activated phenomena in molecular aggregates, including radiative and nonradiative decay pathways. We consider both intra- and intermolecular mechanisms and focus on the role of conical intersections as facilitators of internal conversion. We explore the use of the exciton models for Frenkel and charge transfer states and the electronic structure methods and algorithms commonly applied for excited-state dynamics. Throughout the review, we analyze the approximations employed for the simulation of internal conversion, intersystem crossing, and reverse intersystem crossing rates and analyze the molecular processes behind single fission, triplet-triplet annihilation, Dexter energy transfer, and Förster energy transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.