Abstract
Intercropping planting pattern under plastic film mulching (PFM) has been widely adopted in the arid regions to reduce soil evaporation (E), improve land-use efficiency, and increase crop yield. However, water competition between intercropping components in the soil-plant-atmosphere continuum remains largely unexplored. The evaporation and radiation interception using the neighboring species model (ERIN) can effectively estimate evapotranspiration (ET) in a different intercropping ecosystem. However, the effects of soil surface resistance in the mulching area on ET are not considered in the ERIN model. Thus, the existing ET models do not accurately estimate ET in the intercropping ecosystem with PFM. In this study, we proposed a modified ERIN model (MERIN). In the MERIN model, soil surface resistance in the mulching area was taken into account, and its performance was compared to ERIN and Penman-Monteith (PM) models. These models were validated against observed ET and E using the water balance method and micro-lysimeters in a corn intercropped tomato experiment under high (HI: 30 mm for corn and 22.5 mm for tomato, a locally recommended irrigation depth), medium (MI: 22.5 mm for corn and 16.9 mm for tomato, 25% of HI), and low irrigation depth (LI: 15 mm for corn and 11.25 mm for tomato, 50% of HI) during 2018-2019, respectively. The outcomes of this study showed that the MERIN model could accurately estimate ET and E variation for a corn-tomato intercropping ecosystem under PFM during the entire crop growth season compared to the other examined models. The most intense water competition between corn and tomato was observed in stage II (the elongation and tasseling stages for corn; the flowering and fruiting stages for tomato). T of corn generally was higher than tomato, but an opposite result was also observed in stage II. Additionally, the variation of water competition under different irrigation levels was similar in the intercropping ecosystem. When irrigation depth decreased to 22.5 and 15 mm from 30 mm, average T for corn decreased by 10.7% and 16.3%, respectively, and by 12.9% and 22.4% for tomato, respectively, in both years.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.