Abstract

BackgroundType I signal peptidases (SPases) are essential membrane-bound serine proteases responsible for the cleavage of signal peptides from proteins that are translocated across biological membranes. The crystal structure of SPase in complex with signal peptide has not been solved and their substrate-binding site and binding specificities remain poorly understood. We report here a structure-based model for Escherichia coli DsbA 13–25 in complex with its endogenous type I SPase.ResultsThe bound structure of DsbA 13–25 in complex with its endogenous type I SPase reported here reveals the existence of an extended conformation of the precursor protein with a pronounced backbone twist between positions P3 and P1'. Residues 13–25 of DsbA occupy, and thereby define 13 subsites, S7 to S6', within the SPase substrate-binding site. The newly defined subsites, S1' to S6' play critical roles in the substrate specificities of E. coli SPase. Our results are in accord with available experimental data.ConclusionCollectively, the results of this study provide interesting new insights into the binding conformation of signal peptides and the substrate-binding site of E. coli SPase. This is the first report on the modeling of a precursor protein into the entire SPase binding site. Together with the conserved precursor protein binding conformation, the existing and newly identified substrate binding sites readily explain SPase cleavage fidelity, consistent with existing biochemical results and solution structures of inhibitors in complex with E. coli SPase. Our data suggests that both signal and mature moiety sequences play important roles and should be considered in the development of predictive tools.

Highlights

  • Type I signal peptidases (SPases) are essential membrane-bound serine proteases responsible for the cleavage of signal peptides from proteins that are translocated across biological membranes

  • We report the modeling of an E. coli periplasmic dithiol oxidase, DsbA 13–25 in complex with E. coli type I SPase based on the crystal structures of E. coli SPase in complex with β-lactam [16] and lipopeptide [17] inhibitors

  • By threading the P7 to P1' positions against the solved structures of β-lactam [16] and lipopeptide [17] inhibitors, our model reveals that precursor protein is bound to E. coli type I SPase with a pronounced twist between positions positioned -3 (P3) and P1'

Read more

Summary

Introduction

Type I signal peptidases (SPases) are essential membrane-bound serine proteases responsible for the cleavage of signal peptides from proteins that are translocated across biological membranes. Translocation across the cell membrane requires the presence of short signal sequences termed "signal peptides" that are localized at the amino terminus (N-terminus) of proteins [1]. These N-termini localized signal peptides are subsequently removed from the newly synthesized precursor proteins by type I signal peptidases (SPases) [2]. Mutations in the signal peptide have been known to affect secretion either by enhancing the processing of the cleavage site or by inhibiting this proteolytic processing [7]. We are interested in understanding the determinants involved in signal peptide recognition, binding and cleavage

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call