Abstract

In this paper, computable global bounds on errors due to the use of various mathematical models of physical phenomena are derived. The procedure involves identifying a so-called fine model among a class of models of certain events and then using that model as a datum with respect to which coarser models can be compared. The error inherent in a coarse model, compared to the fine datum, can be bounded by residual functionals unambiguously defined by solutions of the coarse model. Whenever there exist hierarchical classes of models in which levels of sophistication of various coarse models can be defined, an adaptive modeling strategy can be implemented to control modeling error. In the present work, the class of models is within those embodied in nonlinear continuum mechanics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.