Abstract

BackgroundEpigenetic regulation contributes to many important processes in biological cells. Examples include developmental processes, differentiation and maturation of stem cells, evolution of malignancy and other. Cell cycle regulation has been subject of mathematical modeling by a number of authors that resulted in many interesting models and application of analytic techniques ranging from stochastic processes to partial differential equations and to integral, functional and operator equations. In this paper we address the question of how the regulation of protein contents influences the long-term dynamics of the population. To accomplish this, we follow the philosophy of a 1984 model by Kimmel et al., but adjust the details to fit the experimental data on protein PRC1 from a more recent paper.ResultsWe built a model of cell cycle dynamics of the PRC1 and fitted it to the data made available by Cohen and his co-authors. We have run the model for a large number of cell generations, recording the PRC1 contents in all cells of the resulting pedigree, at constant time intervals. During cell division the PRC1 is unequally divided between daughter cells. The picture emerging from simulations of Data set 1 is that of a very well-tuned regulatory circuit that provides a stable distribution of PRC1 contents and interdivision times. Data set 2 seems qualitatively different, with more variation in cell cycle duration.ConclusionsThe main question we address is whether the regulatory feedbacks deduced from single cell cycle data provide epigenetic regulation of cell characteristics in long run. PRC1 is a good candidate because of its role in setting timing of division. Findings of the current paper include tight regulation of the cell cycle (particularly the timing of the cell cycle) even that PRC1 is only one of the players in cell dynamics. Understanding that association, even close, does not necessarily imply causation, we consider this an interesting and important result.ReviewersThis article was reviewed by Ollivier Hyrien, Anna Marciniak-Czochra and Alberto d’Onofrio.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.