Abstract

Wireless communication offers significant advantages in terms of flexibility, coverage and maintenance compared to wired solutions and is being actively deployed in the industry. IEEE 802.15.4 standardizes the Physical and the Medium Access Control (MAC) layer for Low Power and Lossy Networks (LLNs) and features Timeslotted Channel Hopping (TSCH) for reliable, low-latency communication with scheduling capabilities. Multiple scheduling schemes were proposed to address Quality of Service (QoS) in challenging scenarios. However, most of them are evaluated through simulations and experiments, which are often time-consuming and may be difficult to reproduce. Analytical modeling of TSCH performance is lacking, as only one-hop communication with simplified traffic patterns is considered in state-of-the-art. This work proposes a new framework based on queuing theory and combinatorics to evaluate end-to-end delays in multihop TSCH networks of arbitrary topology, traffic and link conditions. The framework is validated in simulations using OMNeT++ and shows below 6% root-mean-square error (RMSE), providing quick and reliable latency estimation tool to support decision-making and enable formalized comparison of existing scheduling solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.