Abstract

An important task of micro- and nanoelectronics is establishing a new universal memory type in a near future. Unlike DRAM and flash memories a new universal memory should not require electric charge storing, but alternative principles of information storage. For successful application a new universal memory has to be non-volatile and must also exhibit low operating voltages, low power consumption, high operation speed, long retention time, high endurance, and a simple structure. Several alternative principles of information storage are available. We focus on two memory technologies based on the resistance change principle, RRAM and the spin transfer torque (STT) RAM, which are the most promising candidates for future universal memory. We present a brief overview of the current state-of-the-art of these technologies and outline future trends and challenges from the perspective of modeling and simulation of the switching process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.