Abstract
A Pom-Pom polymer with qa side chains of molecular weight Mw,a at both ends of a backbone chain of molecular weight Mw,b is the simplest branched polymer topology. Ten nearly monodisperse polystyrene Pom-Pom systems synthesized via an optimized anionic polymerization and a grafting-onto method with Mw,b of 100 to 400 kg/mol, Mw,a of 9 to 50 kg/mol, and qa between 9 and 22 are considered. We analyze the elongational rheology of the Pom-Poms by use of the hierarchical multi-mode molecular stress function (HMMSF) model, which has been shown to predict the elongational viscosity of linear and long-chain branched (LCB) polymer melts based exclusively on the linear-viscoelastic characterization and a single material parameter, the so-called dilution modulus GD. For the Pom-Poms considered here, we show that GD can be identified with the plateau modulus {G}_{N}^{0}={G}_{D}, and the modeling of the elongational viscosity of the Pom-Poms does therefore not require any fitting parameter but is fully determined by the linear-viscoelastic characterization of the melts. Due to the high strain hardening of the Pom-Poms, brittle fracture is observed at higher strains and strain rates, which is well described by the entropic fracture criterion.Graphical abstract
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.