Abstract
Magnetic reconnection releases the magnetic energy through the contraction of multi-magnetic island leading to the electron acceleration as proposed by Drake et. al in 2006. However, how the released magnetic energy is converted into electron’s kinetic energy is still theoretically not well understood. We model in particular the kinetic process assuming the adiabatic contraction of magnetic island that induces electric field which is proportional to the vector potential of the magnetic island and approximate the magnetic island with an ellipse. Under this model, we show that the energy gain is achieved through the work of inductive electric field. We further show that the curvature drift which is along the inductive electric field dominates the energy gain. We compared our model with the magnetic island formed by tearing instability in a 2.5D particle-in-cell simulation of magnetic reconnection and found the results from the model consistent with that of the simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.