Abstract

Electrical properties, specifically critical current density, of a superconducting film carry a substantial importance in superconductivity. In this work, we measure and study the current–voltage curves for a superconducting Nb film with various geometries of antidots to tune the critical current. We carry out the measurements on a commercially available physical property measurement system to obtain these so-called transport measurements. We show that each of the used geometries exhibits a vastly different critical current, due to which repeatedly performing the measurements independently for each geometry becomes indispensable. To circumvent this monotonous measurement procedure, we also propose a framework based on artificial neural networks to predict the curves for different geometries using a small subset of measurements, and facilitate extrapolation of these curves over a wide range of parameters including temperature and magnetic field. The predicted curves are then cross-checked using the physical measurements; our results suggest a negligible mean-squared error—in the order of 10^{-9}.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call