Abstract

We propose a continuum theory of the liquid-liquid phase separation in an elastic network, where phase-separated microscopic droplets rich in one fluid component can form as an interplay of fluids mixing, droplet nucleation, network deformation, thermodynamic fluctuation, etc. We find that the size of the phase-separated droplets decreases with the shear modulus of the elastic network in the form of ∝[modulus]^{-1/3} and the number density of the droplet increases almost linearly with the shear modulus ∝[modulus], which are verified by the experimental observations. Phase diagrams in the space of (fluid constitution, mixture interaction, network modulus) are provided, which can help to understand similar phase separations in biological cells and also to guide fabrications of synthetic cells with desired phase properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.