Abstract

Vegetation restoration is helpful in preventing soil erosion but aggravates water scarcity, thus resulting in soil desiccation on the wind-water erosion crisscross region (WWECR) of the Loess Plateau in Northwestern China. However, no guideline currently exists on the selection of plant species and density for restoration purposes. Based on the process model of soil water-carrying capacity for vegetation (SWCCV) originally developed in this region, this study validated the model under a broad range of weather regimes, soil types, and land uses. The SWCCV model was applied as a diagnostic tool to obtain insights into the separate effects of vegetation density and land use on soil water dynamics on the WWECR of the Loess Plateau. Results showed that the total water loss at semi-natural grasslands was close to rainfall while significantly decreasing runoffs, thus indicating that semi-natural grass was suitable for vegetation restoration on the WWECR. If Caragana korshinskii is planted for agronomic and economic benefits, a density of 3,400 trees ha(-1) will yield the most optimal soil water conservation benefits at study site. Our recommended land use and vegetation density were directive and instructional for vegetation restoration on the WWECR and that our modeling approach could be extended to applications in other arid and semi-arid regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.