Abstract

PH domains mediate interactions involved in cell signaling, intracellular membrane transport regulation and cytoskeleton organization. Some PH domains bind phosphoinositides with different affinity and specificity. The two novel PLCη (1 and 2) possess an N-terminal PH domain (PHη1 and PHη2 respectively) that has been implicated in membrane association and induction of PLC activity. Understanding of the structure and dynamics is crucial for future modulation of lipid-protein interactions in PHη1, PHη2 and other PH domains. Therefore, the three-dimensional structure of PHη1 and PHη2 was modeled using ITASSER and phosphoinositides (IP3 and IP4) were docked in the inferred binding site using HADDOCK server. Molecular Dynamics simulations of unliganded and phosphoinositide bound PHη1 and PHη2 were performed using AMBER14 to study the mechanism of interaction, and conformational dynamics in response to phosphoinositide binding. The binding affinity was predicted using Kdeep server. The models of PHη1 and PHη2 had a conserved structural core consisting of seven β-strands and a C-terminal α-helix as seen in other PH domains. Sequence/structure analysis showed that phosphoinositide ligands bind PHη1 and PHη2 at the canonical binding site. Phosphoinositide binding induced movement of positively charged side chains towards the ligand, changes in the secondary structure especially at the β5-β6 loop and allosteric changes at the interface of β1-β2 and β5-β6 loops. Dynamics studies showed that the size of the binding site and differential affinity for IP3/IP4 binding is coordinated by the number, length, flexibility, secondary structure and allosteric interactions of the loops surrounding the phosphoinositide binding site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.