Abstract

This paper presents a modeling approach for dual active bridge (DAB) converter in electric vehicle (EV) applications which considers the magnetizing inductance effect of the high-frequency transformer. A Typical DAB transformer has very high magnetizing inductance compared to the leakage inductance. As a result, the magnetizing current can be neglected. However, for integrated and hybrid converters, where the same core is used for both DC excitation and AC excitation, an air gap is used to prevent core saturation. In such applications, the effect of magnetizing inductance needs to be considered for DAB converter modeling. For accurate estimation of the DAB converter, a loss model considering magnetizing inductance is developed in this paper. Finite element analysis (FEA) is performed to model the transformer to evaluate the proximity loss and fringe induced eddy current loss mechanisms. An experimental prototype of the DAB converter is developed to verify the proposed model. Experimental waveforms are presented and compared for different power level and switching frequency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call