Abstract

The affinity of drugs and other xenobiotic agents for melanin is a well-known phenomenon, often occurring with serious physiological consequences. For example, the interaction of anti-psychotic drugs with neuromelanin may play a pivotal role in the induction of extrapyramidal movement disorders associated with the chronic administration of phenothiazine and other neuroleptic agents. Little, however, is known about the complete nature of melanin-drug binding and the impact of these interactions on the physico-chemical properties of melanin. Data, such as binding affinities, can be analyzed using recently developed computational methods that combine mathematical models of chemical structure with statistical analysis. In particular, theoretical linear solvation energy relationships provide a convenient model for understanding and predicting biological, chemical, and physical properties. By using this modeling technique, drug-melanin binding of a set of 16 compounds has been analyzed with correlation analysis and a set of theoretical molecular parameters in order to better understand and characterize drug-melanin interactions. The resulting correlation equation supports a charge transfer model for drug-melanin complex formation and can also be used to estimate binding constants for related compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.