Abstract

AddAB enzyme is a helicase-nuclease complex that initiates recombinational repair of double-stranded DNA breaks. It catalyzes processive DNA unwinding and concomitant resection of the unwound strands, which are modulated by the recognition of a recombination hotspot called Chi in the 3'-terminated strand. Despite extensive structural, biochemical and single molecule studies, the detailed molecular mechanism of DNA unwinding by the complex and modulation by Chi sequence remains unclear. A model of DNA unwinding by the AddAB complex and modulation by Chi recognition was presented, based on which the dynamics of AddAB complex was studied analytically. The theoretical results explain well the available experimental data on effect of DNA sequence on velocity, effect of Chi recognition on velocity, static disorder peculiar to the AddAB complex, and dynamics of pausing of wild-type and mutant AddAB complexes occurring at Chi or Chi-like sequence. Predictions were provided. Comparisons of AddAB complex with other helicase-nuclease complexes such as RecBCD and AdnAB were made. The study has strong implications for the molecular mechanism of DNA unwinding by the AddAB complex. The intriguing issues are addressed of why Chi recognition is an inefficient process, how AddAB complex pauses upon recognizing Chi sequence, how the paused state transits to the translocating state, why the mutant AddAB with a stronger affinity to Chi sequence has a shorter pausing lifetime, why the pausing lifetime is sensitive to the solution temperature, and so on.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.