Abstract

Directed evolution experiments rely on the cyclical application of mutagenesis, screening and amplification in a test tube. They have led to the creation of novel proteins for a wide range of applications. However, directed evolution currently requires an uncertain, typically large, number of labor intensive and expensive experimental cycles before proteins with improved function are identified. This paper introduces predictive models for quantifying the outcome of the experiments aiding in the setup of directed evolution for maximizing the chances of obtaining DNA sequences encoding enzymes with improved activities. Two methods of DNA manipulation are analysed: error-prone PCR and DNA recombination. Error-prone PCR is a DNA replication process that intentionally introduces copying errors by imposing mutagenic reaction conditions. The proposed model calculates the probability of producing a specific nucleotide sequence after a number of PCR cycles. DNA recombination methods rely on the mixing and concatenation of genetic material from a number of parent sequences. This paper focuses on modeling a specific DNA recombination protocol, DNA shuffling. Three aspects of the DNA shuffling procedure are modeled: the fragment size distribution after random fragmentation by DNase I, the assembly of DNA fragments, and the probability of assembling specific sequences or combinations of mutations. Results obtained with the proposed models compare favorably with experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.