Abstract

A one‐dimensional, vertically resolved, physical‐biogeochemical model is used to provide a unified representation of the dynamically coupled oxic‐suboxic‐anoxic system for the interior Black Sea. The model relates the annual cycle of plankton production in the form of a series of successive phytoplankton, mesozooplankton, and higher consumer blooms to organic matter generation and to the remineralization‐ammonification‐nitrification‐denitrification chain of the nitrogen cycle as well as to anaerobic sulfide oxidation in the suboxic‐anoxic interface zone. The simulations indicate that oxygen consumption during remineralization and nitrification, together with a lack of ventilation of subsurface waters due to the presence of strong stratification, are the two main factors limiting aerobic biogeochemical activity to the upper ∼75 m of the water column, which approximately corresponds to the level of nitrate maximum. The position of the upper boundary and thus the thickness of the suboxic layer are controlled by upper layer biological processes. The quasi‐permanent character of this layer and the stability of the suboxic‐anoxic interface within the last several decades are maintained by a constant rate of nitrate supply from the nitrate maximum zone. Nitrate is consumed to oxidize sinking particulate organic matter as well as hydrogen sulfide and ammonium transported upward from deeper levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.