Abstract
ABSTRACTTaylor’s law states that the variance of the distribution of distance between two randomly chosen individuals is a power function of the mean distance. It applies to the distances between two randomly chosen points in various geometric shapes, subject to a few conditions. In Réunion Island and metropolitan France, at some spatial scales, the empirical frequency distributions of inter-individual distances are predicted accurately by the theoretical frequency distributions of inter-point distances in models of geometric probability under a uniform distribution of points. When these models fail to predict the empirical frequency distributions of inter-individual distances, they provide baselines against which to highlight the spatial distribution of population concentrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.