Abstract

Highly resolved numerical simulations are conducted to evaluate the longitudinal and transverse dispersivities proposed for use in the larger-scale Yucca Mountain saturated zone (SZ) site-scale model. Two different stochastic continuum models (SCM) that define the spatial variability of permeability are inferred from the observed fracture characteristics and the measured permeabilities. These models are created with a combination of indicator geostatistics and boolean simulation that allow for modeling different correlation lengths and anisotropy ratios at different permeability thresholds as well as the inclusion of large, high-permeability features. Longitudinal and transverse (horizontal and vertical) dispersion through the permeability realizations is evaluated for both distributed and focused source geometries using groundwater flow and streamline particle tracking. These numerical results are compared to behavior predicted by an analytical solution and to dispersivities estimated by an expert panel. Early time transport results are significantly non-Gaussian due to the strong heterogeneity of the fractured medium. At late times, travel distances of 23 correlation lengths, the longitudinal and transverse horizontal dispersivity results are well approximated by the analytical solution and the expert elicitation estimates. The calculated transverse vertical dispersivity values are smaller than those estimated from the analytical solution. Inclusion of high-permeability features of the same size as the model domain with a distributed planar source creates extreme values of the longitudinal and transverse horizontal dispersivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.