Abstract

Anisotropic nucleation and growth of multi-classes of dislocation loops under the combined actions of fast-neutrons and an external applied stress are considered in modeling dislocation structure development in metals and alloys. The stochastic nature of the nucleation kinetics is formulated via the Fokker–Planck equation. The strain derived from the climb of the anisotropic dislocation structure is separable into volumetric and deviatoric components, corresponding respectively to swelling and creep. The creep contribution resulting from the development of the stress-induced dislocation anisotropy is found to be very significant and exhibits a strong correlation with swelling. For stainless steel, our model explains very well the complex deformation behavior observed in a wide variety of in-reactor experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.