Abstract

Learning the Longitudinal Dispersion (LD) mechanism in natural channel is vitally important to be able to control water pollution and to prevent different stratification in flow that crucial for water resources conservation for both human and aquatic life. Many related studies can be found in the existing literature. However, almost all studies aim to investigate the mechanism of the LD in natural channels or to model dimensional LD coefficient. The main goal of this work is to develop three models based on different artificial neural network techniques to predict dimensionless (not dimensional) LD coefficients in natural channels. Another goal of this study is to present a large and critical assessment on the existing studies made on both dimensional and dimensionless LD. The data sets obtained from the literature concerning more than 30 rivers at different times in the United States of America, include the depth, the width, and the mean cross-sectional velocity of the flow, shear velocity, and dimensionless longitudinal dispersion coefficient. The results have been compared with the data at hand, a fuzzy based model, and seven conventional equations proposed in literature by using statistical magnitudes, error modes, and contour map method. It is observed that the feed forward neural network yields the best reliable results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.