Abstract

In this paper a lattice model for the diffusional transport of particles in the interphase cell nucleus is proposed. Dense networks of chromatin fibers are created by three different methods: Randomly distributed, noninterconnected obstacles, a random walk chain model, and a self-avoiding random walk chain model with persistence length. By comparing a discrete and a continuous version of the random walk chain model, we demonstrate that lattice discretization does not alter particle diffusion. The influence of the three dimensional geometry of the fiber network on the particle diffusion is investigated in detail while varying the occupation volume, chain length, persistence length, and walker size. It is shown that adjacency of the monomers, the excluded volume effect incorporated in the self-avoiding random walk model, and, to a lesser extent, the persistence length affect particle diffusion. It is demonstrated how the introduction of the effective chain occupancy, which is a convolution of the geometric chain volume with the walker size, eliminates the conformational effects of the network on the diffusion, i.e., when plotting the diffusion coefficient as a function of the effective chain volume, the data fall onto a master curve.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call