Abstract

In recent years, there has been intense interest in understanding various physical phenomena in random heterogeneous media. Any accurate description/simulation of a process in such media has to satisfactorily account for the twin issues of randomness as well as the multilength scale variations in the material properties. An accurate model of the material property variation in the system is an important prerequisite towards complete characterization of the system response. We propose a general methodology to construct a data-driven, reduced-order model to describe property variations in realistic heterogeneous media. This reduced-order model then serves as the input to the stochastic partial differential equation describing thermal diffusion through random heterogeneous media. A decoupled scheme is used to tackle the problems of stochasticity and multilength scale variations in properties. A sparse-grid collocation strategy is utilized to reduce the solution of the stochastic partial differential equation to a set of deterministic problems. A variational multiscale method with explicit subgrid modeling is used to solve these deterministic problems. An illustrative example using experimental data is provided to showcase the effectiveness of the proposed methodology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.