Abstract

This paper presents the design of miniaturized bond wire transformers assembled with standard IC bonding wires and NiZn and MnZn ferrite toroidal cores. Several prototypes are fabricated on a printed circuit board substrate with various layouts in a $4.95\; {\rm mm} \times 4.95\; {\rm mm}$ area. The devices are modeled by analytical means and characterized with impedance measurements over a wide frequency range. Experimental results on 1:38 device show that the secondary self-inductance increases from 0.3 μH with air-core to 315 μH with ferrite core; the coupling coefficient improves from 0.1 with air-core to 0.9 with ferrite core; the effective turns ratio enhances from 0.5 with air-core to 34 with ferrite core. This approach is cost effective and enables a flexible design of efficient micromagnetics on top of ICs with dc inductance to resistance ratio of 70 μH/Ω and an inductance per unit area of 12.8 μH/mm2 up to 0.3 MHz. The design targets the development of bootstrap circuits for ultralow voltage energy harvesting. In this context, a low-voltage step-up oscillator suitable for thermoelectric generator sources is realized with a commercial IC and the proposed microtransformers. Experimental measurements on a discrete prototype report that the circuit bootstraps from voltages down to 260 mV and outputs a dc voltage of 2 V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.