Abstract

A numerical reactive transport model was developed to simulate the bioremediation processes in a perchloroethene (PCE) contaminated single fracture system augmented with Dehalococcoides sp. (DHC). The model describes multispecies bioreactive transport processes that include bacterial growth and detachment dynamics, biodegradation of chlorinated species, competitive inhibition of various reactive species, and the loss of daughter products because of back‐partitioning effects. Two sets of experimental data, available in the study by Schaefer et al. (2010b), were used to calibrate and test the model. The model was able to simulate both datasets. The simulation results indicated that the yield coefficient and the DHC maximum utilization rate coefficient were the two important process parameters. A detailed sensitivity study was completed to quantify the sensitivity of the model to variations in these two parameter values. The results show that an increase in yield coefficient increases bacterial growth and thus expedites the dechlorination process, whereas an increase in maximum utilization rate coefficient greatly increased dechlorination rates. The proposed model provides a mathematical framework for simulating remediation systems that employ DHC bioaugmentation for restoring chlorinated‐solvent contaminated groundwater aquifers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.