Abstract

In 2001, Schonbucher and Schubert extended Li’s well-known Gaussian copula model for modeling dependent defaults to allow for tail dependence. Instead of the Gaussian copula, Schonbucher and Schubert suggested to use Archimedean copulas. These copulas are able to capture tail dependence and therefore allow a standard intensity-based default model to have a positive probability of joint defaults within a short time period. As can be observed in the current financial crisis, this is an indispensable feature of any realistic default model. Another feature, motivated by empirical observations but rarely taken into account in default models, is that modeled portfolio components affected by defaults show significantly different levels of dependence depending on whether they belong to the same industry sector or not. The present work presents an extension of the model suggested by Schonbucher and Schubert to account for this fact. For this, nested Archimedean copulas are applied. As an application, the pricing of collateralized debt obligations is treated. Since the resulting loss distribution is not analytical tractable, fast sampling algorithms for nested Archimedean copulas are developed. Such algorithms boil down to sampling certain distributions given by their Laplace-Stieltjes transforms. For a large range of nested Archimedean copulas, efficient sampling techniques can be derived. Moreover, a general transformation of an Archimedean generator allows to construct and sample the corresponding nested Archimedean copulas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.