Abstract
Density functional theory calculations are employed to investigate the mechanism and energies of the decomposition of N-nitrosoamides in the presence of a resorcinarene-based self-assembled nanocapsule. From experiments, it is known that confinement in the capsule inhibits the thermal decomposition of these compounds. N-Nitrosoamides with both aromatic and aliphatic substituents are considered here and the calculations show that, for both kinds, binding to the capsule leads to a significant increase in the energy barrier of the rate-determining step, the 1,3 N→O acyl transfer reaction. A distortion-interaction analysis is conducted to probe the reasons behind the inhibition of the reaction. In addition, we characterized hypothetical intermediates that might be involved in the formation of the decomposition products inside the capsule. Interestingly, it is found that the capsule stabilizes ion-pair species that are unstable in mesitylene solution. Finally, a possible explanation is proposed for the observed encapsulation of the decomposition product of only one of the substrates.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.