Abstract

In the framework of the landslide susceptibility assessment, the maps produced should include not only the landslide initiation areas, but also those areas potentially affected by the traveling mobilized material. To achieve this purpose, the susceptibility analysis must be separated in two distinct components: (1) The first one, which is also the most discussed in the literature, deals with the susceptibility to failure, and (2) the second component refers to the run-out modeling using the initiation areas as an input. Therefore, in this research we present a debris flow susceptibility assessment in a recently burned area in a mountain zone in central Portugal. The modeling of debris flow initiation areas is performed using two statistical methods: a bivariate (information value) and a multivariate (logistic regression). The independent validation of the results generated areas under the receiver operating characteristic curves between 0.91 and 0.98. The slope angle, plan curvature, soil thickness and lithology proved to be the most relevant predisposing factors for the debris flow initiation in recently burned areas. The run-out is simulated by applying two different methods: the empirical model Flow Path Assessment of Gravitational Hazards at a Regional Scale (Flow-R) and the hydrological algorithm D-infinity downslope influence (DI). The run-out modeling of the 36 initiation areas included in the debris flow inventory delivered a true positive rate of 83.5% for Flow-R and 80.5% for DI, reflecting a good performance of both models. Finally, the susceptibility map for the entire basin including both the initiation and the run-out areas in a scenario of a recent wildfire was produced by combining the four models mentioned above.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.