Abstract

For data backup processes to cloud infrastructure, there is a clean trade off between backing up frequently (improving data safety) and reducing resource usage (power consumption and communication cost). With rapid growth of data storage requirements in recent years, we need to find the right balance between both objectives. To explicitly address this trade off, we model a wide set of exhaustive data backup processes as a general batch service queueing model with multiple vacations and probabilistic restarts.We study this queueing model and establish expressions for its performance measures such as system content and queue content distributions. This analysis aids in computing Quality of Service (QoS) measures of the data backup process such as the fraction of time the backup server is busy, the frequency of new connections and the age of the data at the beginning of a backup period. This enables us to quickly examine the dependence of QoS on the model parameters as well as to compute the optimal parameters in the backup process. We illustrate the latter by defining a particular cost function of a user and by framing an optimization problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.