Abstract

Graphene is a significant reinforcement in metal matrix composites by virtue of its superior mechanical properties. The cracking of metal crystal and the failure of graphene-metal interface are the main reasons for the decrease of mechanical properties of graphene/metal composites, but the damage mechanism of that is not clear. In this paper, a novel two-dimensional microstructure model of graphene/polycrystalline metal composites is established by a self-developed structure modeling procedure. According to the actual structure of graphene/metal composites, the numbers, sizes, orientations, arrangements of graphene and grain can be controlled respectively. Moreover, by employing the method of combining the crystal plasticity finite element method (CPFEM) and the cohesive zone model (CZM), the damage mechanism of graphene/aluminum (Al) composites on polycrystalline Al matrix, graphene-reinforcement and graphene-Al interface under tensile load is revealed from the mesoscale for the first time, then the effects of graphene morphology and initial microcracks on the failure behavior and overall mechanical properties of graphene/Al composites are fully captured. This study provides a strong theoretical support and inspiration for the construction of graphene/Al composites with excellent properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.