Abstract

Irrigation is an essential component of ornamental plant production, yet relatively little is known about how much water nursery crops require to maintain optimal growth rates. Our objectives were to precisely determine the daily water use (DWU) of Hydrangea macrophylla and Gardenia jasminoides grown in 6-L containers, quantify how this is affected by environmental conditions, develop a quantitative model describing DWU, evaluate this model with an independent data set, and determine the feasibility of using crop coefficients (Kc) for irrigation scheduling. In 2010, we quantified the DWU of two Hydrangea macrophylla cultivars, Fasan and Pia. There was little difference in DWU of the two cultivars, which ranged from 50 to 300 mL/plant/day depending on plant age and environmental (hoophouse) conditions. In 2010, daily light integral (DLI) had the greatest influence on DWU with DWU increasing with increasing DLI. The combination of plant age, final leaf area, DLI, and their interactions explained 83.2% and 90.8% of day-to-day variation in DWU of ‘Fasan’ and ‘Pia’, respectively. In July 2011, a follow-up study was conducted using Hydrangea macrophylla ‘Fasan’ and Gardenia jasminoides ‘Radicans’. DWU of ‘Fasan’ ranged from 50 to 200 mL/plant/day and DWU of ‘Radicans’ ranged from 50 to 560 mL/plant/day. The lower DWU of ‘Fasan’ in 2011 compared with 2010 was the result of stunted growth of the hydrangeas, a result of elevated temperatures within the hoophouse during the plants initial growth flush. Vapor pressure deficit (VPD) explained more of the daily fluctuations in DWU in 2011 compared with 2010. Predicting DWU of the 2011 ‘Fasan’ crop using 2011 environmental conditions and the model developed using the 2010 data resulted in DWU estimates that were on average 64% too high. This discrepancy is likely the result of slower overall growth rate and a 15.4% reduction in ‘Fasan’ total growth in 2011 compared with 2010 and points to the challenges of modeling DWU. There were distinct seasonal changes in Kc values for the crops, but the trends differed between 2010 and 2011. Our results suggest that an accurate measure of canopy size may improve performance of predictive water use models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call