Abstract
Accurate prediction of fuel deposition during crude oil pyrolysis is pivotal for sustaining the combustion front and ensuring the effectiveness of in-situ combustion enhanced oil recovery (ISC EOR). Employing 2071 experimental TGA datasets from 13 diverse crude oil samples extracted from the literature, this study sought to precisely model crude oil pyrolysis. A suite of robust machine learning techniques, encompassing three black-box approaches (Categorical Gradient Boosting—CatBoost, Gaussian Process Regression—GPR, Extreme Gradient Boosting—XGBoost), and a white-box approach (Genetic Programming—GP), was employed to estimate crude oil residue at varying temperature intervals during TGA runs. Notably, the XGBoost model emerged as the most accurate, boasting a mean absolute percentage error (MAPE) of 0.7796% and a determination coefficient (R2) of 0.9999. Subsequently, the GPR, CatBoost, and GP models demonstrated commendable performance. The GP model, while displaying slightly higher error in comparison to the black-box models, yielded acceptable results and proved suitable for swift estimation of crude oil residue during pyrolysis. Furthermore, a sensitivity analysis was conducted to reveal the varying influence of input parameters on residual crude oil during pyrolysis. Among the inputs, temperature and asphaltenes were identified as the most influential factors in the crude oil pyrolysis process. Higher temperatures and oil °API gravity were associated with a negative impact, leading to a decrease in fuel deposition. On the other hand, increased values of asphaltenes, resins, and heating rates showed a positive impact, resulting in an increase in fuel deposition. These findings underscore the importance of precise modeling for fuel deposition during crude oil pyrolysis, offering insights that can significantly benefit ISC EOR practices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.